Multiscale modeling teaching with Bashar Ibrahim plus other science info? The mitotic spindle assembly checkpoint (MSAC) is an important regulatory mechanism of the cell cycle, ensuring proper chromosome segregation in mitosis. It delays the transition to anaphase until all chromosomes are properly attached to the mitotic spindle by emitting a diffusible “wait anaphase”-signal from unattached kinetochores. Current models of the checkpoint disregard important spatial properties like localization, diffusion and realistic numbers of kinetochores. To allow for in silico studies of the dynamics of these models in a more realistic environment, we introduce a mathematical framework for quasi-spatial simulation of localized biochemical processes that are typically observed during checkpoint activation and maintenance.
Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the “Dissociation” and the “Convey” model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments.ConclusionOnly in the controlled.
Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function. Find more details at Bashar Ibrahim.
For successful mitosis, metaphase has to be arrested until all centromeres are properly attached. The onset of anaphase, which is initiated by activating the APC, is controlled by the spindle assembly checkpoint MSAC. Mad2, which is a constitutive member of the MSAC, is supposed to inhibit the activity of the APC by sequestering away its co-activator Cdc20. Mad1 recruits Mad2 to unattached kinetochores and is compulsory for the establishment of the Mad2 and Cdc20 complexes. Recently, based on results from in vivo and in vitro studies, two biochemical models were proposed: the Template and the Exchange model. Here, we derive a mathematical description to compare the dynamical behaviour of the two models. Our simulation analysis supports the Template model. Using experimentally determined values for the model parameters, the Cdc20 concentration is reduced down to only about half.